Reduction of Hexavalent Chromium and Detection of Chromate Reductase (ChrR) in Stenotrophomonas maltophilia.

نویسندگان

  • Rosa Baldiris
  • Natali Acosta-Tapia
  • Alfredo Montes
  • Jennifer Hernández
  • Ricardo Vivas-Reyes
چکیده

An Gram negative strain of S. maltophilia, indigenous to environments contaminated by Cr(VI) and identified by biochemical methods and 16S rRNA gene analysis, reduced chromate by 100%, 98-99% and 92% at concentrations in the 10-70, 80-300, and 500 mg/L range, respectively at pH 7 and temperature 37 °C. Increasing concentrations of Cr(VI) in the medium lowered the growth rate but could not be directly correlated with the amount of Cr(VI) reduced. The strain also exhibited multiple resistance to antibiotics and tolerance and resistance to various heavy metals (Ni, Zn and Cu), with the exception of Hg. Hexavalent chromium reduction was mainly associated with the soluble fraction of the cell evaluated with crude cell-free extracts. A protein of molecular weight around 25 kDa was detected on SDS-PAGE gel depending on the concentration of hexavalent chromium in the medium (0, 100 and 500 mg/L). In silico analysis in this contribution, revealed the presence of the chromate reductase gene ChrR in S. maltophilia, evidenced through a fragment of around 468 bp obtained experimentally. High Cr(VI) concentration resistance and high Cr(VI) reducing ability of the strain make it a suitable candidate for bioremediation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane-associated chromate reductase activity from Enterobacter cloacae.

Washed cells of Enterobacter cloacae HO1 reduced hexavalent chromium (chromate: CrO4(2-) anaerobically. Chromate reductase activity was preferentially associated with the membrane fraction of the cells. Right-side-out membrane vesicles prepared from E. cloacae cells showed high chromate reductase activities when ascorbate-reduced phenazine methosulfate was added as an electron donor.

متن کامل

Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil

Hexavalent chromium-resistant Ochrobactrum intermedium BCR400 was isolated from chromium contaminated soil collected from Vadodara, Gujarat. It reduced 100 mg Cr(VI)/L completely in 52 h with initial Cr(VI) reduction rate of 1.98 mg/L/h. The Cr(VI) reduction rate decreased with increase in Cr(VI) concentration from 100 to 500 mg/L. The addition of anthraquinone-2-sulphonic acid (AQS) to culture...

متن کامل

Hexavalent Chromate Reductase Activity in Cell Free Extracts of Penicillium sp.

A chromium-resistant fungus isolated from contaminated air with industrial vapors can be used for reducing toxic Cr(VI) to Cr(III). This study analyzes in vitro reduction of hexavalent chromium using cell free extract(s) of the fungus that was characterized based on optimal temperature, pH, use of electron donors, metal ions and initial Cr(VI) concentration in the reaction mixture. This showed ...

متن کامل

Crystal Structure of ChrR—A Quinone Reductase with the Capacity to Reduce Chromate

The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 Å resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed tha...

متن کامل

Studies on Chromated Erythrocytes. Effect of Sodium Chromate on Erythrocyte Glutathione Reductase.

The marked affinity of erythrocytes for hexavalent chromate anion was reported in 1950 by Gray and Sterling (1). Since then, erythrocytes labeled with radioactive sodium chromate have been used extensively for the determination of erythrocyte survival in vivo (1-5) and the determination of blood volume (4-6). The anionic hexavalent form of chromium is bound firmly to erythrocytes, is not reutil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2018